I. Let each small square represent $\frac{1}{6}$.
a. Using the same unit, draw and shade the following fractions. Represent each as a sum of unit fractions.

Example: $\frac{5}{6}$
i. 1

ii. $\frac{3}{6}$
i. $\frac{8}{6}$
b. Record the decompositions of parts (i) and (iii) using only 2 addends.
i.
iii.
c. Rewrite the equations from Part (a) as the multiplication of a whole number by a unit fraction.
i.
ii.
iii.
2. Cross out the fraction that is not equivalent to the other three. Show how you know.

$$
\frac{6}{4} \quad \frac{60}{40} \quad \frac{12}{8} \quad \frac{10}{5}
$$

3. Fill in the blanks to make each number sentence true. Draw a number line, tape diagram, or area model to represent each problem.
a. $\frac{6}{8}+$ \qquad $=1$
b. $\frac{3}{5}+\frac{1}{5}+\frac{2}{5}=$
\qquad
a. 37×89
b. 46×52

4. Fill in the circle with $<,=$, or $>$ to make a true number sentence. Justify each response by drawing a model (such as an area model or number line), creating common denominators or numerators, or explaining a comparison to a benchmark fraction.
a.

b. 2

$\frac{6}{10}$
5. 3 friends brought some juice to drink at the park.
a. Alex, Jacob, and Frank each had identical containers of juice. Alex drank $\frac{3}{8}$ of his container, Jacob drank $\frac{6}{8}$ of his container, and Frank drank $\frac{7}{8}$ of his container. How many containers of juice did they drink?
